Bentonite clays as (electro)catalysts and adsorbents

T. Mudrinić

ICHTM–DCCE, University of Belgrade, Belgrade, Republic of Serbia
tihanal@nanosys.ihtm.bg.ac.rs

Acknowledgment: This work was supported by the Ministry of Education, Science and Technological Development of the R. Serbia, (Project: III 45001).

In our previous investigations numerous of the functional materials based on bentonite were obtained. Organomodification with chitosan and quaternary alkylammonium cations, lead to obtainment of successful adsorbents for nicotine, azo dyes, their mixtures with toxic metallic cations\(^1\), as well as radioactive TcO\(_4\)\(^-\). Pillared clays (PILC) with incorporated Al or mixture of Al with Fe, Co, Ni oxide pillars, as well as Co-impregnated Al-PILC were proven as efficient heterogeneous Fenton-like catalysts for removal of azo dyes, phenol and its derivatives in the presence of either hydrogen peroxides\(^2\) or Oxone\(^3\).

Organobentonites and PILCs were also tested as electrode materials. Electrodes were prepared either in the form of thin layer deposited on the glassy carbon electrode or carbon paste electrode. It was found that the type of bentonite modification and the choice of active component are the key feature that prevents electrode deactivation during electrochemical oxidation of phenol and its derivatives\(^4\). Electrodes based on bentonite modified with chitosan or poly(vinyl alcohol) were successfully applied in simultaneous detection of phenol derivatives even in the real water\(^5\). Besides mentioned applications in environmental protection, non-enzymatic bentonite based electrode was proven to be applicable in quantitative determination of glucose regardless the presence of the interfering species commonly present in human blood\(^6\).

References

TIHANA MUDRINIĆ is assistant research professor at University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute, Department of Catalysis and Chemical Engineering Republic of Serbia. She received her PhD degree from University of Belgrade, Faculty of Physical Chemistry in 2016. Her research interests are obtaining functional clay-based electrode materials applicable in environmental protection, biochemical analysis as well as in the energy conversion reactions. She has published 20 papers in international peer reviewed journals with high impact factor.